

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

4728

Mechanics 1

Friday

21 JANUARY 2005

Afternoon

1 hour 30 minutes

Additional materials: Answer booklet Graph paper List of Formulae (MF1)

TIME

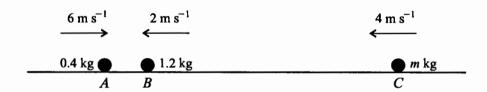
1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- The acceleration due to gravity is denoted by $g \, \text{m s}^{-2}$. Unless otherwise instructed, when a numerical value is needed, use g = 9.8.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

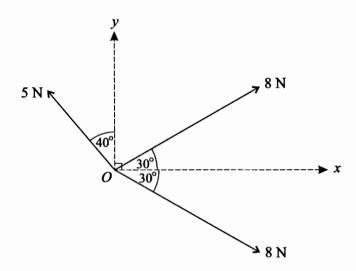
- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.



A box of weight 100 N rests in equilibrium on a plane inclined at an angle α to the horizontal. It is given that $\sin \alpha = 0.28$ and $\cos \alpha = 0.96$. A force of magnitude PN acts on the box parallel to the plane in the upwards direction (see diagram). The coefficient of friction between the box and the plane is 0.25.

- (i) Find the magnitude of the normal force acting on the box. [2]
- (ii) Given that the equilibrium is limiting, show that the magnitude of the frictional force acting on the box is 24 N. [1]
- (iii) Find the value of P for which the box is on the point of slipping
 - (a) down the plane,
 - (b) up the plane.

[3]


2

Three small uniform spheres A, B and C have masses 0.4 kg, 1.2 kg and m kg respectively. The spheres move in the same straight line on a smooth horizontal table, with B between A and C. Sphere A is moving towards B with speed 6 m s⁻¹, B is moving towards A with speed 2 m s⁻¹ and C is moving towards B with speed 4 m s⁻¹ (see diagram). Spheres A and B collide. After this collision B moves with speed 1 m s⁻¹ towards C.

- (i) Find the speed with which A moves after the collision and state the direction of motion of A. [5]
- (ii) Spheres B and C now collide and move away from each other with speeds $0.5 \,\mathrm{m \, s^{-1}}$ and $2 \,\mathrm{m \, s^{-1}}$ respectively. Find the value of m.

3

Three coplanar forces of magnitudes $5 \, \text{N}$, $8 \, \text{N}$ and $8 \, \text{N}$ act at the origin O of rectangular coordinate axes. The directions of the forces are as shown in the diagram.

- (i) Find the component of the resultant of the three forces in
 - (a) the x-direction,
 - **(b)** the y-direction.

[5]

(ii) Find the magnitude and direction of the resultant.

- [4]
- A particle moves in a straight line. Its velocity t s after leaving a fixed point on the line is $v \, \text{m s}^{-1}$, where $v = t + 0.1t^2$. Find
 - (i) an expression for the acceleration of the particle at time t,

[2]

- (ii) the distance travelled by the particle from time t = 0 until the instant when its acceleration is $2.8 \,\mathrm{m\,s^{-2}}$.
- 5 Two particles A and B are projected vertically upwards from horizontal ground at the same instant. The speeds of projection of A and B are 7 m s^{-1} and 10.5 m s^{-1} respectively.
 - (i) Write down expressions for the heights above the ground of A and B at time t seconds after projection. [1]
 - (ii) Hence find a simplified expression for the difference in the heights of A and B at time t seconds after projection.
 - (iii) Find the difference in the heights of A and B when A is at its maximum height. [3]

At the instant when B is 3.5 m above A, find

(iv) whether A is moving upwards or downwards, [3]

(v) the height of A above the ground. [2]

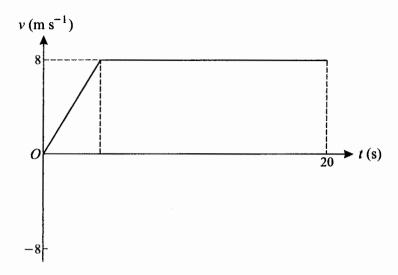
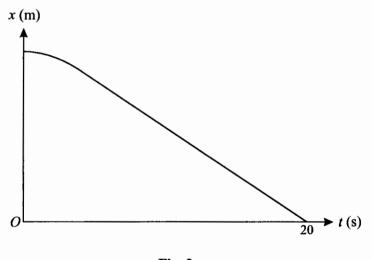


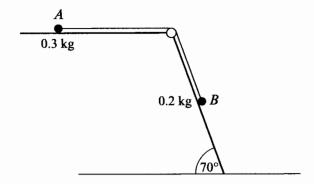
Fig. 1

A cyclist P travels along a straight road starting from rest at A and accelerating at 2 m s^{-2} up to a speed of 8 m s^{-1} . He continues at a constant speed of 8 m s^{-1} , passing through the point B 20 s after leaving A. Fig. 1 shows the (t, v) graph of P's journey for $0 \le t \le 20$. Find

(i) the time for which P is accelerating, [2]

(ii) the distance AB. [3]




Fig. 2

Another cyclist Q travels along the same straight road in the opposite direction. She starts at rest from B at the same instant that P leaves A. Cyclist Q accelerates at $2 \,\mathrm{m \, s^{-2}}$ up to a speed of $8 \,\mathrm{m \, s^{-1}}$ and continues at a constant speed of $8 \,\mathrm{m \, s^{-1}}$, passing through the point A 20 s after leaving B. Fig. 2 shows the (t, x) graph of Q's journey for $0 \le t \le 20$, where x is the displacement of Q from A towards B.

(iii) Sketch a copy of Fig. 1 and add to your copy a sketch of the (t, v) graph of Q's journey for $0 \le t \le 20$.

(iv) Sketch a copy of Fig. 2 and add to your copy a sketch of the (t, x) graph of P's journey for $0 \le t \le 20$.

(v) Find the value t at the instant that P and Q pass each other. [3]

The upper edge of a smooth plane inclined at 70° to the horizontal is joined to an edge of a rough horizontal table. Particles A and B, of masses $0.3 \, \text{kg}$ and $0.2 \, \text{kg}$ respectively, are attached to the ends of a light inextensible string. The string passes over a smooth pulley which is fixed at the top of the smooth inclined plane. Particle A is held in contact with the rough horizontal table and particle B is in contact with the smooth inclined plane with the string taut (see diagram). The coefficient of friction between A and the horizontal table is 0.4. Particle A is released from rest and the system starts to move.

(i) Find the acceleration of A and the tension in the string. [8]

The string breaks when the speed of the particles is $1.5 \,\mathrm{m \, s}^{-1}$.

- (ii) Assuming A does not reach the pulley, find the distance travelled by A after the string breaks. [3]
- (iii) Assuming B does not reach the ground before A stops, find the distance travelled by B from the time the string breaks to the time that A stops. [6]

	1	(i)	$R = W\cos\alpha$	M1		For resolving forces perpendicular to the plane
			Magnitude is 96 N	A1	2	
Ī		(ii)	Magnitude is 24 N	B1	1	AG From correct work.
Ī		(iii)	$P = 100 \times 0.28 - 24$	M1		For resolving 3 forces parallel to the plane (either
			$P = 100 \times 0.28 + 24$			case)
			(a) $P = 4$	A1		
			(b) $P = 52$	A1	3	

2	(i)	Momentum of A and B before			Alternatively: Momentum lost by $A = 0.4 \times (6 - v)$
		$collision = 0.4 \times 6 - 1.2 \times 2$	B1		B1
		Momentum of A and B after			Momentum gained by B
		$collision = 0.4v + 1.2 \times 1$	B1		$=1.2\times(1+2)$ B1
		$0.4 \times 6 - 1.2 \times 2 = 0.4v + 1.2 \times 1$	M1		For using the principle of conservation of
		(v = -3)			momentum
		Speed is 3 ms ⁻¹	A1		Positive answer only
L		Direction is away from B	A1 ft	5	ft from <i>v</i>
	(ii)	$1.2 \times 1 - 4m = -1.2 \times 0.5 + 2m$			For momentum equation :-
		or $1.2 \times 1 + 1.2 \times 0.5 = 4m + 2m$			_
			B1		with lhs correct
			B1		with rhs correct
L	[m = 0.3	B1	3	
[SR If mgv used for momentum instead of mv,
					then
					(i) Speed is 3 ms ⁻¹ B1
					Direction is away from B B1 ft
					(ii) $m = 0.3$ B1

3	(i)(a)		M1		For resolving 3 forces parallel to the <i>x</i> -axis
		$X = 2 \times 8\cos 30^{\circ} - 5\sin 40^{\circ}$	A1		
L		Component is 10.6 N	A1 ft		ft for 4.17 from sin/cos mix only
	(i)(b)	$Y = 5\cos 40^{\circ}$	B1		
		Component is 3.83 N	B1 ft	5	ft for 3.21 from sin/cos mix only
[(ii)	$R^2 = 10.64^2 + 3.83^2$	M1		For using $R^2 = X^2 + Y^2$
		Magnitude is 11.3 N	A1 ft		-
		$\tan \theta = 3.83/10.64$	M1		For using $\tan \theta = Y/X$
		Direction is 19.8° anticlockwise			-
		from +ve <i>x</i> -axis	A1 ft	4	

4	(i)		M1		For using $a = \dot{v}(t)$
		Acceleration is $1 + 0.2t$	A1	2	
	(ii)		M1		For solving $a(t) = 2.8$ for t
		<i>t</i> = 9	A1		
			M1*		For integrating $v(t)$ to find $s(t)$
			A1		For $t^2 \div 2$ correct in $s(t)$
			A1		For $t^3 \div 30$ correct in $s(t)$
		$s(9) = 9^2 \div 2 + 9^3 \div 30 - (0+0)$	dep*M1		For correct use of limits or equivalent
		(=40.5+24.3)			_
		Distance is 64.8 m	A1 ft	7	ft their $a = \dot{v}(t)$ from (i)

5	(i)	Heights are $7t - \frac{1}{2}gt^2$ and			
		$10.5t - \frac{1}{2}gt^2$	B1	1	
	(ii)	Expression is 3.5 <i>t</i>	B1	1	From correct (i)
	(iii)	0 = 7 - 9.8t	M1		For using $v = u - gt$ with $v = 0$
		t = 5/7 or 0.714	A1		
		Difference is 2.5 m	A1 ft	3	ft value of t
	(iv)	t = 1	B1 ft		For using $ans(ii) = 3.5$ correctly
		Greater than 5/7 (may be implied)	M1		For comparing this <i>t</i> with the time to greatest
		or 7 - $g \times 1$ is -ve			height or considering the sign of v_A for this t
		Direction is downwards	A1	3	
	(v)	$h_{\rm A} = 7 \times 1 - \frac{1}{2} 9.8 \times 1^2$	M1		For using $h = ut - \frac{1}{2}gt^2$ with relevant t
		Height is 2.1 m	A1	2	

6	(i)		M1		For using the idea that the gradient represents
0	(1)		1411		acceleration or for using
					v = u + at
		Accelerating for 4 s	A1	2	V = u + ui
	(ii)	Accelerating for 4.5	M1		For using the idea that the distance is represented
	(11)		IVII		by the area of the trapezium or using suitable
		AB 1/ (16 + 20)9	A 1.C.		formulae for the two stages of the journey
		$AB = \frac{1}{2}(16 + 20)8$	A1ft	_	
		Distance is 144 m	A1	3	
	(iii)				Graph is single valued and continuous and
					consists of two straight line segments with
					one segment from the origin and the other parallel
			B1		to the t axis
					Graph for Q is the reflection of the graph for P in
L			B1	2	the t axis
	(iv)				Graph is single valued and continuous and
					consists of two parts, one of which is a straight
					line segment, with x increasing from 0 for the
			B1		interval $0 < t < 20$
			B1		$x_{\rm P}(20)$ appears to be equal to $x_{\rm O}(0)$
			B1		Graph for P appears to be the reflection in $x =$
				3	$ans(ii) \div 2$ of graph for Q
	(v)	$t = 20 - (\frac{1}{2} \ 144 \div 8)$	M1		For complete method of finding the required time
	(.,	or $16 + 8(t-4) = 128 - 8(t-4)$ or			
		equivalent			
		Value of t is 11	A2	3	
		value 01 t 15 1 1	112	J	SR Allow B1 for t = 11 without explanation
1					SK Allow Di Toi t – 11 williout expialiation

7	(i)		M1		For applying Newton's second law to either particle
		T-F=0.3a	A1		particle
		$0.2g\sin 70^{\circ} - T = 0.2a$	A1		
		R = 0.3g	B1		
		F = 0.4(0.3g)	M1		For using $F = \mu R$
		$0.2g\sin 70^{\circ} - 0.4(0.3g) = 0.5a$	M1		For eliminating <i>F</i> and <i>T</i> or <i>a</i>
		Acceleration is 1.33 ms ⁻²	A1		-
		Tension is 1.58 N	A1	8	
	(ii)	a = -0.4g	B1		May be scored in (iii)
		$0 = 1.5^2 - 2 \times 3.92s$	M1		For using $v^2 = u^2 + 2as$ with $v = 0$
L		Distance is 0.287 m	A1	3	
	(iii)		M1		For using $v = u + at$ or equivalent with $v = 0$ for A
		0 = 1.5 - 3.92t	A1ft		ft value of a from (ii)
		t = 0.383 (may be implied)	A1		
		$a = g\sin 70^{\circ}$	B1		For acceleration of B
		$s = 1.5(0.383) + \frac{1}{2}9.8\sin 70^{\circ} (0.383)^{2}$	M1		For using $s = ut + \frac{1}{2} at^2$ or equivalent with $u \neq 0$
		(=0.574+0.674)			
		Distance is 1.25 m	A1	6	